返回首页

土壤中的硒

来源:www.dbkyw.com   时间:2023-02-18 20:01   点击:118  编辑:admin   手机版

(一)土壤硒的分布及其控制因素

高硒中毒区、非中毒区和低硒区土壤总硒含量与土壤水溶性硒的含量与平均值见表5-9、5-10。如果按这两种硒参数指标考察高硒区土壤硒的分布,可将其划分为三种类型:①相对高总硒含量高水溶性硒(沙地、花被、杉坨、芭蕉、罗家坝),②相对低总硒含量高水溶性硒(新塘、鱼塘坝),③相对低总硒低水溶性硒(晓关、自生桥、范家坪)。第①类型既包括中毒村,也有非中毒村;第②类型为中毒村;第③类型为非中毒村。如果将①②类型看成中毒高危险区,它们的共同特点是具有高水溶性硒(12.93~112.66ng/g,平均50.98ng/g),然而总硒平均值相差甚远(最低只有4.96μg/g,而最高可达25.42μg/g)。第③类可视为富硒非中毒危险区,其水溶性硒只有2.81~8.13ng/g,平均4.62ng/g,比高危险区低很多;但总硒含量却与危险区中的低值接近(例如鱼塘坝、新塘)。

上述三种硒分布类型的土壤分别来自两种土壤母质。第①、③类型的土壤主要来自富硒岩石的残坡积层,第②类型的土壤则来自富硒岩石和其它岩石的山麓堆积层、山间河流冲积层和池塘堆积层。残坡积层原地发育的砂质粘土呈灰褐色、褐色;土层较薄;土壤成熟度中等,分异不明显;土中岩石碎块较多但成分单一,基本上为硅质白云岩、硅质炭质页岩;土壤pH大多数为6~7.5,呈中偏微酸性。土壤硒的分布特征和土壤结构特征(表5-10)表明,这类发育于富硒岩石残坡积层的土壤继承了岩石富硒的特征,并受岩石分布范围控制。但是同一岩石层位上不同地点土壤从母岩中继承的硒含量是不一样的。例如图5-6中,范家坪与杉坨村都在吴家坪组层位上,采集的土壤都在这个层位的硅质炭质页岩附近,然而范家坪土壤硒平均只有6.62μg/g,而杉坨村却达到15.18μg/g。类似的情况,在自生桥、晓关硅质炭质页岩附近采集的土壤样品硒平均值分别只有3.99和2.19μg/g,而芭蕉、罗家坝、沙地等同样的土壤样品硒平均值却分别达到25.42、20.56和18.04μg/g。这种同一类型土壤硒含量不均的现象极有可能是同一富硒层位的母岩在各地硒含量不均造成的,也有可能与地形坡度、侵蚀面位置或剥蚀深度等有关。

由冲积物的混合物发育而成的土壤有两种产出形式,一种是新塘型,由山麓堆积+河流冲积组成;另一种为鱼塘坝型,由山间洼地池塘堆积而成。山麓堆积形成的砂质粘土呈灰褐色,土层厚,成熟度中等,分异不好。土中碎块多,成分复杂,有灰岩、页岩、炭质页岩、白云岩、含炭硅质岩等(表5-10)。在远离山麓的河流冲积土中碎块明显减少,砂质成分增多,大多数为粘土质砂岩,土壤pH6.60~7.75,呈中性。鱼塘坝四面环山,中间为洼地,在最低处形成蓄水池塘,其北面即为硒矿层出露区。土壤为地表水搬运堆积形成的灰褐色粘土质砂土,土层厚,岩石碎块少,土壤成熟度高,土壤pH6.04~6.67,略偏酸性(表5-9、10)。以上两种产出形式的土壤总硒偏低,但水溶性硒很高,可能是运积物掺入了其它低硒物质,但可溶性硒却随富硒岩层演变的流体介质在地势低洼处富集。因此该类型土壤硒的分布除了受富硒岩层的控制,还可能受当地环境介质和地形条件的影响。在低硒区,土壤总硒和水溶性硒分别为0.073~0.16μg/g和0.25~1.48ng/g,基本上处于低硒土壤范围。但低硒非克山病村(如民生、继昌)比克山病村(如长坪、支罗)无论总硒还是水溶性硒都偏高(表5-9,10)。在低硒的紫色粉砂质泥岩和泥质粉砂岩区发育紫色粘土和灰褐色粘土质细砂土。它们直接产于岩石风化形成的残坡积层之上,土层薄,成熟度低,分异不明显,腐质层极不发育,土壤肥效差,pH4~6,土壤呈酸性。很明显,低硒土壤继承了岩石低硒的特点,直接受低硒岩石控制。

(二)土壤硒分布与其他元素及参数的关系

表5-9 恩施地区土壤硒含量统计

*为水稻土。

表5-10 恩施地区土壤特征及硒含量统计

土壤总硒、水溶性硒,以及其他22种元素和参数值列于表5-11、5-12,由表中可看出,在高硒非中毒村中,芭蕉和罗家坝土壤总硒和水溶性硒明显比其它非中毒村高,而与高硒中毒病村一致;除此之外,它们的Zn、Pb、Cd、Mn、Mo、Cr、Ni、V等元素丰度也比其他非病村高;但三者之间Al、Fe、Ca、Mg、K、Na却相差不大。土壤中Al、Fe、Ca、Mg、K含量相近反映了无论中毒村,还是非中毒村土壤的基本组成可能是一致的,它们都可能来自富硒岩层,只是由于成土的方式不同(形成残坡积母质或运积母质)或者富硒岩石层位被剥蚀出露的深度不同而导致了不同地点土壤Se和Zn、Pb、Cd、Mn、Mo、Cr、Ni、V等分布的差异。另一个值得注意的现象是,高硒非中毒村(包括芭蕉和罗家坝非中毒村)的土壤S浓度比中毒村高,其平均值是中毒村的3倍(表5-11)。由于S与Se的特殊关系,它可能影响到粮食对Se的吸收。在高硒土壤中硒与某些元素及特征参数的关系示于图5-7中。图中Se与V、Cr、P、Pb、Zn、Cd、F、LOI和TOC呈正相关关系,而与Fe、Mn、S和pH基本上不相关。也就是说土壤中Se浓度的增加与Fe、Mn、S、pH的变化不发生直接关系,而只与有机质,LOI和V、Cr、P、Pb、Zn、Cd、F等的变化有关。不过在S-Se关系图中仍可分辨出中毒村和非中毒村两种不同的演化趋势。中毒村土壤中Se增加得比S快,而非中毒村土壤中S增加得比Se快,因而显示出非中毒村土壤S平均值比中毒村高的特点。高硒土壤中硒分布动态变化的重要结论可用张忠(1995)和朱建明(1997)的土壤硒形态分析作进一步说明。他们二人都共同选择双河鱼塘坝高硒土壤样品用连续提取法对硒形态或结合态进行分析。张忠的分析结果列于表5-13中。从表中可以看出,土壤硒主要决定于有机态硒、硫化物硒和残余态硒,它们三者加和达到95%以上,而水溶态硒、交换态硒和氧化物态硒的加和大多只有1%~2%。对总硒的影响很小。这就是说高硒区土壤总硒只与土壤有机态硒,硫化物态硒和残余态硒发生关系,而很少与水溶性硒、交换态硒和氧化物态硒发生关系。土壤中与铁锰氧化物有关的硒包括氧化物结合态硒和被铁锰氧化物吸附的交换硒,由于本区土壤中交换态硒和氧化物结合态硒很低,因此,土壤总硒与铁和锰的关系自然不很明显。但是当交换态硒(除了铁锰氧化物吸附的硒,还有粘土矿物和有机物吸附的硒)与水溶性硒合并在一起时,它们与土壤总硒呈正相关关系(图5-7)。尽管土壤总硒与硫化物硒的关系非常明显,约17%~37%的硒进入硫化物中,但是由于S与Se在二者浓度都高时呈拮抗作用,二者浓度都低时呈协同作用,Se在硫化物中的含量因类质同像替代S的强弱而不同。S与Se的这种不确定关系,导致了土壤总硒与S的关系不稳定。

表5-11 恩施地区土壤化学元素分析结果

地矿部测试所和英国地调所分析。

表5-12 土壤硒有机炭和烧失量统计表

表5-13 双河鱼塘坝土壤样品硒形态分析结果

注:表中数据除所占比例和加和/总量例外,其余的单位为ng/g。 (据张忠,1995)

本区土壤总硒与土壤有机质(硒)确定的正相关关系,使有机质硒在土壤硒状态中起到重要影响。实际上由于有机硒中存在着可溶性的或者可被植物吸收的有效硒,当本区土壤中水溶性硒和可交换态硒对植物有效性影响很小时,有机硒的有效部分将起重要作用。因此,从土本区土壤总硒与土壤有机质(硒)确定的正相关关系,使有机质硒在土壤硒状态中起到重要影响。实际上由于有机硒中存在着可溶性的或者可被植物吸收的有效硒,当本区土壤中水溶性硒和可交换态硒对植物有效性影响很小时,有机硒的有效部分将起重要作用。因此,从土壤角度来看,本区硒中毒可能来自水溶性硒+可交换态硒+有机态硒,其中有机态硒可能是最主要的作用因素,可交换态硒大部呈被铁锰氧化物或有机质吸附的Ⅳ价态硒,其有效性受到pH和矿物粒度的影响(彭安等,1988;朴河春等,1996;Humdy等,1977;Balistrieri等,1990),而水溶性硒则可能因量小而作用不明显。

图5-7 土壤硒与其它元素及特征参数关系图解(1)

图5-7 土壤硒与其它元素及特征参数关系图解(2)

顶一下
(0)
0%
踩一下
(0)
0%